Newer
Older
sllm / main.py
@david david 23 days ago 6 KB make model a parameter
import requests
from bs4 import BeautifulSoup
import json
import argparse
from rich.console import Console
from rich.markdown import Markdown

def duckduckgo_search(query, num_results=5):
    # Construct the DuckDuckGo URL for the search query
    url = f"https://html.duckduckgo.com/html/?q={query}"
    
    # Send a GET request to the DuckDuckGo search page
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    
    response = requests.get(url, headers=headers)
    
    # Check if the request was successful
    if response.status_code != 200:
        print(f"Failed to retrieve search results. Status code: {response.status_code}")
        return []
    
    # Parse the HTML content using BeautifulSoup
    soup = BeautifulSoup(response.content, 'html.parser')
    
    # Find all result links (assuming they are in <a> tags with class "result__a")
    result_links = []
    for a_tag in soup.find_all('a', class_='result__a'):
        link = a_tag.get('href')
        if link:
            result_links.append(link)
            if len(result_links) >= num_results:
                break
    
    return result_links


def extract_text_from_links(links, timeout=5):
    extracted_texts = []
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    
    for link in links:        
        try:
            response = requests.get(link, headers=headers, timeout=timeout)
            if response.status_code == 200:
                soup = BeautifulSoup(response.content, 'html.parser')
                # Extract text from the page
                text = soup.get_text(separator='\n', strip=True)
                extracted_texts.append((link, text))
            else:
                print(f"Failed to retrieve content from {link}. Status code: {response.status_code}")
        except requests.RequestException as e:
            print(f"An error occurred while fetching {link}: {e}")
    
    return extracted_texts


def summarize_individual_texts(texts_and_urls, query, model, ollama_url="http://localhost:11434/api/generate"):
    summaries = []
    for url, text in texts_and_urls:
        prompt = f"Extract the relevant information from the following text with regards to the original \
        query: '{query}'\n\n{text}\n"
        payload = {
            "model": model,
            "prompt": prompt,
            "stream": False,
            "max_tokens": 1000
        }
        
        try:
            response = requests.post(ollama_url, json=payload)
            if response.status_code == 200:
                result = json.loads(response.text)["response"]
                summaries.append((url, result))
            else:
                print(f"Failed to get summary from Ollama server for {url}. Status code: {response.status_code}")
        except requests.RequestException as e:
            print(f"An error occurred while sending request to Ollama server for {url}: {e}")
    
    return summaries


def summarize_with_ollama(texts_and_urls, query, model, ollama_url="http://localhost:11434/api/generate"):
    # Prepare the context and prompt
    context = "\n".join([f"URL: {url}\nText: {text}" for url, text in texts_and_urls])
    prompt = f"Summarize the following search results with regards to the original query: '{query}' \
        and include the full URLs as references where appropriate. Use markdown to format your response and unicode characters. \
        \n\n{context}"
    
    # Create the payload for the POST request
    payload = {        
        "model": model,
        "prompt": prompt,
        "stream": False,
        "max_tokens": 1500
    }
    
    # Send the POST request to the Ollama server
    try:
        print("Processing")
        response = requests.post(ollama_url, json=payload)
        if response.status_code == 200:
            result = json.loads(response.text)["response"]
            return result
        else:
            print(f"Failed to get summary from Ollama server. Status code: {response.status_code}")
            return None
    except requests.RequestException as e:
        print(f"An error occurred while sending request to Ollama server: {e}")
        return None


def optimize_search_query(query, model, ollama_url="http://localhost:11434/api/generate"):
    # Prepare the prompt for optimizing the search query
    prompt = f"Optimize the following natural language query to improve its effectiveness in a web search.\
        Make it very concise. query: '{query}'"
    
    # Create the payload for the POST request
    payload = {        
        "model": model,
        "prompt": prompt,
        "stream": False,
        "max_tokens": 50
    }
    
    # Send the POST request to the Ollama server
    try:
        print("Optimizing search query")
        response = requests.post(ollama_url, json=payload)
        if response.status_code == 200:
            result = json.loads(response.text)["response"].strip()
            return result.strip('"')
        else:
            print(f"Failed to optimize search query from Ollama server. Status code: {response.status_code}")
            return query
    except requests.RequestException as e:
        print(f"An error occurred while sending request to Ollama server for optimizing the search query: {e}")
        return query


def pretty_print_markdown(markdown_text):
    console = Console()
    md = Markdown(markdown_text)
    console.print(md)
    

if __name__ == "__main__":
    # Set up argument parser
    parser = argparse.ArgumentParser(description="Search DuckDuckGo, extract text from results, and summarize with Ollama.")
    parser.add_argument("query", type=str, help="The search query to use on DuckDuckGo")
    parser.add_argument("--num_results", type=int, default=5, help="Number of search results to process (default: 5)")
    
    # Parse arguments
    args = parser.parse_args()
    
    original_query = args.query
    model = "qc"

    # Optimize the search query
    optimized_query = optimize_search_query(original_query, model)
    print(f"Original Query: {original_query}")
    print(f"Optimized Query: {optimized_query}")

    n = args.num_results  # Number of results to extract
    links = duckduckgo_search(optimized_query, n)
    
    print(f"Top {n} search results:")
    for i, link in enumerate(links, start=1):
        print(f"{i}. {link}")
    
    texts_and_urls = extract_text_from_links(links)
    
    print("Summarizing individual search results")
    intermediate_summaries = summarize_individual_texts(texts_and_urls, original_query, model)
    final_summary = summarize_with_ollama(intermediate_summaries, original_query, model)
    
    if final_summary:
        print("\nFinal Summary of search results:\n")
        pretty_print_markdown(final_summary)